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I. INTRODUCTION

This study (s the first step in determining northing values Iin the
Universal Transverse Mercator (UTM) Military Grid Syster., The UTM coordinate
system is obtained by projecting:-the earth's surface onco an oblate cylinder
slightly smaller than the earth's radii., The northing value Is a measure of
the distance from the equator to any point of latitude on the earth's surface.
The first step in determining the northing value requires a very accurate
calculation of the distance along an ellipse, which Is analogous to calcu-
lating the UTM northing value along the UTM zone central meridian,

The purpose of this study was to determine an accurate closed loop solu-
tion for calculating northing values along the central meridian. This report
derives and evaluates three different techniques for determining this distance.
They are: (1) the Gaussian integration of a second order elliptical equation
using parametric latitude, (2) the closed form approximation of the expanded
and integrated elliptical equation, and (3) the summation of average radii of
curvature as a function of the geodetic latitude angle.

A. Derivation of the Equation for an Ellipse

To begin this study, the equation of an ellipse was derived. 1In the
following drawing, two concentric circles of radii a, b with centers at the
origin were drawn. Next, a ray was drawn from the origin cutting both circles
at the points Q and R and forming the angle y, P is then the Intersection of
the line parallel to the Y-axis through Q and the line parallel to the X-axis
through R. For each angle vy there is determined point P, whose coordinates
(X, Y) are dependent upon y .

{o,b) !
)
!
Q
L N e \xy
y
] X (a,0)

¢
[ . .
Since 00 = a and DR = b, X and Y are expressed as functions of v by,
‘ X = a cosy
Y = b sin vy (1)
[ 1
1
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From the equatlons above, it can be seen that

X
a

= cosy and % = siny

(2)

Then by squaring and adding these equations together and using the trigono-
metric identity coszy + sinzy = 1, the general formula for an ellipse was
derived. Hence,

X2 y2 =

2 B2 (3)

The complete ellipse is traced out as y (the parametric latitude) goes
from 0 to 2n. Also from equation (2) and the same trigonometric identity it
was found that

Tan vy (4)

o

X,
X

Y

Next, by looking from a geocentric perspective the tan 3 also equalled X

(5)

R

X

Therefore a relationship between the parametric and geocentric angles was
establishad by combining equations (4) and (5).

Tan 8 = E-Tan Y . (6)

B. The Relationship of Beta and Gamma to Alpha

Since primary emphasis generated around geodetic data, a relationship
between geodetic, geocentric, and parametric values was needed. The drawing
below (the relationship of 8 and y to a) shows an ellipse and the geodetic,
geocentric and parametric angles.
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The geodetic angle, a, is formed when taking a perpendicular to a tangent
at any point on the ellipse. 1In Equation (3), the general formula for an
ellipse was differenciated in order to find a relationship between alpha and
the beta and gamma angles. This procedure is shown below:

32 b2 ‘

Rearranging Equation (3) into differentiable form glives,

X2b2 Y232

—_—t =1
alh? a2p2

and (8}
¥Y2b2 + y2a2 = 3212 cconstant).,

Differenciation gives,
2x dx b2 + 2y dy a2 = ¢

and (9)

2y dy a2 = -2x dx b2

In order to determine the tangent of alpha, the diagram below was drawn,

By taking the tangent line as it follows the arrow, it was seen that dy was
positive and dx was negative, thus giving a negative slope. The tangen: of

alpha was found by rotating a 90° and seeing that Tang = :%§ « So, by solving

Equation (9) for ;sx it was determined tha:

- odx _ (a2) [y
et gy (ﬁ)(i) o

AL A o o a
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With the relationships in Equations (6), (9), and (1D), converslion
equations for a were developed. Substituting the equation Tan? = y/x into
Equaticn (10) glves

2
3 = Taa~! (E%f Tana) ’ ‘ (11)
a

and by substituting Tanf = b/a Tany into Equation (10)) gives
y = Tan~] <E~Tan§> (12)

Equations (11) and (12) were used in converting geodetic alpha tH its
geocentric and parametric values.

IT. GAUSSIAN INTEGRATION OF A SECOND ORDER ELLIPTICAL EoI'AT'TON e

Finally, the arc-length formula was derived from the aram-r 1 eqaat i ns
of the ellipse. The procedure is shown as follows:

X = a cosy
Y = b siny , where a > b,

ds? = dx2 + dy2

= (azsinzy + bZCOSZY)de

= [a2<l - coszy) + bzcoszy]dy2
ds =

2-p2
a [l - £ 2b coszy] V2 dy

fo

This 1s an elliptical integral of the second kind where e2 =
the eccentricity of the ellipse. Therefore,

jds = af (l-ezcoszy)l/Z dy (14)

The first of the three methods, the Gaussian numerical integration, using
parametric angles, involved using the integral from Equation (14). This
integral was evaluated from lower to upper gamma in steps of .5° and totaled
for a cumulative sum of arc-distance,

i
<
f — !
i
o
w |t
rof
o
(%)
¢}
o
o
(o)
=
N
(=9
<

al-h2
al

, where e is

IIl. CLOSED FORM APPROXIMATION OF EXPANDED AND INTEGRATED ELLIPTICAL
EQUATION - METHOD 2

Since Equatfon (14) cannot be solved in closed form, the binomial
theorem was used to expand the integrand into an integrable closed form solu-
tion. By using the definition of the binomial theorem

(th)n = l+ny + nggg%lxz + + « « 2tc. (XZ < l), (15)
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and setting

2~ 2
ecCcos~y
2, (16)

X
n

(]

the final solution became

_ eZCOSZV _ 64C084

Y
5 8 + 0 . (17)

Therefore,

2c0s2 boogh
Jos - afy - ooty eheosty gy L (18)

and

2 4 2 4 4
- _ ec _ 3e? - (& e’ _ &
s = alj(l 4 64) Y ( 3 + 32) sin2y 756 sindy + . . . (19)

The second method used to calculate arc distance was obtained from
Equation (19) which was evaluated between two proper limits. Since for the
case under study, one of these limits is y = 0°, Equation (19) can be evalu-
ated directly as a function of y (parametric latitude).

IV. SUMMATION OF AVERAGE RADIUS OF CURVATURE -~ METHOD 3

The third and last method, independently derived using geodetic lati-
tudes, involved taking the radii of curvature of the lower and upper limits (see
drawing below), adding them, taking their average and multiplying them by Ac,
where Ax is the change in geodetic latitude,

ot

In equation form it is,

P
S = E (M) ra (20)
2
)
where
a(l-e?)
Re = + 21)
¢ (1-e2sin2m >/ ¢




The derivation of Equation (21) 1s shown In the Appendlx.

In order for these three methods to be calculated smoothly and effi-
ciently, a Fortran program called ELIPSE was developed. This program, as
listed below, carries out all the aforenamed integration and generates a table
of all the geodetic, geocentric, and parameiric angles along with the three
calculated arc distances from 0° to 90° in steps of .5° (see Table 1).

This study was the first step in determining northing values along the
Central Meridian. Three methods analogous to those in UTM were used to deter-
mine these values. The first method was a numerical integration evaluation of
a closed form integral. The second method was a series approximation of the
integral. The third method used average values of the curvature technique,

The resul:is from comparisons between the three methods show differences
of less than a meter., The conclusion is that any of the three methods could
be used for the determination of UTM northing values from geographical data
without accuracy penalty.

FORTRAN PROGRAM

PROGRAM ELIPSE

CALCULATES THE APCLENGTH PETWEEM TWN LTHITS EXPRESSED T AMGLES RY Itc:
OF THE GAYUSSIAM NUMERICAL THTEGRATION ROUTTNI,APPROYTIMATE CLNSER FO7
SOLUTTOM, AND THE AVERAGE SUM OF THE EQUATORTAL RADRTI.

YOO,

IMPLICTT REAL*8 (A-H,0-7)
EXTERNAL EQUATI
COMMON/AA/RADC E2
CHARACTER*1 ANS

DATA FOR CALCIUJLATIONS

OO

DATA A/6378206.4D0/

DATA B/6356583.8N0/

DATA E2/.0067686580D0/
DATA RADC/57.295779513100/
DATA PI2/1.57079632679490D0/
ADIF=0.5/RADC

EP2=( AX*2-B**2) /B**2
E4=E2**2

FAC1=(B/A)**2

FAC2=B/A

REWIND 3

WRITE(2,100)

100 FORMAT(' ',T7,'GEODETIC',T21, 'GEOCENTRIC',T38, 'PARAMETRIC',
1761, '"MUMERICAL ', T75, 'APPROXIMATION ', TO3, 'AVERAGE RADTI',T110,
$NITER',/,/,/)

GO TO 16
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10 CONTINUE

NDATA CAM BE READ IM USING FOROO3.DAT N9
BY TERMIMAL INPUT

WRITE(6,*)'DO YOU WISH TO COMTIMUE?(Y /M)’
READ(3,101) ANS
101 FORMAT(A)
IF (ANS.EQ.'Y') THEN
WRITE(6,*)'DO YOU WISH TO COMTIMUE?(1/2)'
READ(3, *) IAMS
IF(IANS.EQ.1) THEM
GO TO 16
ELSE
GN TO 999
EMDYOIF
16 CONTINUE
MRITE(6,*) "INPUT |LOHER LIMIT VALUES FOR GEODENTIZ ALPHA IN'
WRITE(G,*) 'DEGREES,MTHUTES, AND SECOMDS.!
READ(3,*,END=550) ATNL, ATML, ATSL
WRITE(6,*) 'PNINTS?!
READ( 3, *M
URITE(6,*) 'SUBINTERVALS?'
READ(3,*)NINT
WRITE(6,*) "ACCURATY FACTOR?!
REAN( 3, *)DEL
WRITE(G,*) "MAX THTEGRATINMS?'
READ(3, *)1AX

CHANGING DEGREFS,MIMHTES, SECOHDS TO DECTMAL DEGRREES
AND CHAMGING DEGREES T0 RADIANS.

CALL DEGREE(DEGRE,AIDL,AIM., AISL)
CALL RADIAN(RAD,DEGRE)
A OW=RAD
INCREMENTING UPPER LIMIT IM STEPS OF .5 DEGREES
AUP=ALCV+ADIF

CORRESPOMDING GEOCENTRTC AND PARAMITRIC LIMITS
R( )=GEOCENTRIC  G{ )=PARFMETRIC

RLOY=DATAN{FACL*DTAN(ALOY))
GLOM=NATAM{FAC2*DTAM{ALD'!))

TEST CASE FOR 00 NEGREFS
JFE (ALOW.GE.1.555N0 THEY
BiP=pPI2
GIP=pT?
ELSE

RUP=DATAN(FACT*DTAM( D)
GUP=DATAM(FAC2*DTAY( ALID)
FEN IF

—_— —
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GAUSSIAM IMTEGRATIMI ,STEP ONE.

YO

CALL GAUSA(G,GDIF,EQUATL,GLON,GUP M, MINT ,DEL ,MAX NTTER)
TSUM=G*A
SUM1=SUMI1+TSUM

APPROXTMATE CLOSEN FORIT SOLUTINM [STE® TWO,

OO0

EQUAT2=(1.n0-.25D0*E2-3.D0/A2 . RO*EL ) *GUP-(1.90/8.N0*F2+1.n0/32.N0
8XE4 ) *DSIN(2*GUP)- (1.00/256.DO*E4*DS TH( A*C!2))
SUM2=EQUAT2*A

OO0

AVERAGE SUM ENUATNRIAL RANTT ,STEP THREE.

RL=(A*(1.D0-E?))/
8(DSQRT(1.N0-(E2*(NSTH( ALY ) ) **¥2) ) %(1.D0-(E2*(NSIM{ALOU)) **23))
RU=(A*(1.n0-F2))/
B(NSORT(1.N0-(E2*(NSTN(AUP)) ¥42) ) *(1.N0-(E2~(NSTN(AUP)) *¥2)))
DELTAA=AUP-ALOY

EQUAT3=( (RL+RU)/2.N0)*NELTAA

SUM3=SUM3+EQUAT3

RADIAMS BACK T0O NEGREES,MINUTES, SECOMNS

OO

CALL TMVRAD(AID,AUP)
CALL INVRAD(BID,BUP)
CALL INVRAD(GID,GUP)
CALL TNVDEG(IAD,IAM,AS,AID)
CALL INVDEG(IRD,IBM,BS,BID)
CALL TMNVDEG(IGD,IGM,GS,GID)

OUTPUT

OO0

WRITE(2,200) IAN, 1AM, AS, IBD, IBM,BS, IGD, TGM,GS, SUMI, SUM2, SUM3,NITER
200 FORMAT(' ',T2,13,T7,12,T10,F7.4,719,13,724,12,727,F7.4,736,13,T41,
®12,744,F7.4,753,F17.0,771,F17.0,789,F17.0,T207,15,/,/)
GO TO 10
550 CONTINUE
099 COMNTINUE
STOP
END

SUBRROUTINES AND FUNCTIONS
DEGREE,RADIAN,EQUATL, TNVDEG, INVRAD

OO0

SUBROUTIME DEGREE(NEGRE,DEG,PMIN,SEC)
IMPLICIT REAL*8 (A-H,0-2)
NEGRE=DABS(NEG)+RMIN/60.n0+SEC/3600.D0
DEGRE=DS IGN(DEGRE ,DEG)

RETURN

EMD
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SUBROUTIME RADIAM(RAD,DEGRE)
COMMON/AA/RADC ,E2

RAD=DEGRE /RADC

RETURN

END

Ll
hoa a0

M o8 am an g a2 am aa om0 4 ﬂ
a.

(]

FUMCTION EQUAT1(GAMMA)

IMPLINIT REAL*8 (A-H,0-2)
£2=.00676266N0
EQUAT1=DSQRT(1.D0-(E2*DCOS(GAMHA) ¥*2) )
RETURN

END

Ty
(e
[}
J T

C

; c
SURROUTIME INVRAD({DEGRE,RAD)

! IMPLICIT REAL*8 (A-Y4,0-7)
coMMOM/AA/RADC E2
NEGRE=RAN*RADC
RETURM
END

———

(v Nep]

SUBROUTINE IMVDEG(INT,MIM,SEC,DEGRE)
IMPLICIT REAL*8 (A-H,0-7)
% INT=TIDINT(DEGRE)

REAL=DFLOAT{ INT)
FRAC=DEGRE-REAL
RSLT=FRAC*60.D0
q M=TIDINT(RSLT)

s REAL=DFLOAT(M)
MIN=REAL
FRAC=RSLT-REAL
SEC=FRAC*60.D0
RETURN

END
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APPENDIX :

From a standard calculus book* the radius of curvature is defined by the -

formula below. q

3/2 .

f! 2 + 1y2 .

Re = HET+ (g)) (A-1) :

[£'g" - g'f"]

Using the equations from the ellipse the f and g functions are defined, i

5 X = f(y) = a cos vy q

P Y = g(y) = b sin ¥y (A-2) :

» ‘
b where y is the parametric latitude defined earlier.

Then by differentiating these equations they can be used in the formula
tor the radius of curvature.

!
"
i
!
‘i

a

Therefore e2 and b

can be substituted into the R¢ equation.

]
[ f' = -a sin y f" = -a cos vy
b g' = b cos vy g" = =b sin v (a-3)
}
. RC - (azsinz-[ + bzcoszY)3/2
(ab sin2y + ab cosly)
b = ;% [a2(1-cos2y) + b2cos2y])3/2
3 .
X .
5 = L 122 - (22-b2)eos2y]3/2 :
{ =5 [a (a<-b#4)cos“y] :
- L2 -2%p? o |32 .
Re = T3 [a (1 ") cos‘y o
X
' a2-p2
} As seen earlier in this report el = 5 . By transforming this equation
. a
b
: the relationships below are obtained.
b2 a 1
r -1 -e? 2.1
b aZ b~ (1-e2) 12 (a-4)
{
s
h

3
, Rc = 33 (1-e2cos2v)3/2

ORR| JOUCRRNIEE. S,

g = (§) a(1-e2cos2y)3/2
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3/2

a(l-e2cos?y)

RC = (A—S)

(l—ez)UQ

Since the radius of curvaturé equation i1s needed in terms of a (the geode-

tic latitude) the relationship between y and « is needed.

Tany = E-Tan a

If a triangle like the one shown below is drawn, then the coszy can be
obtained.

b Tana

cosy = Bt
a2+b2Tan2q
) 1 (A-6)
1 + b2Tan2q .
al
2
Since Lkl = (1-e2) then
a2
2 1
€OSTY = 1+(1-e2)Tan2a (A-7)

By expanding Equation (A-7) and substituting it into Eqrnation (A-5) then
Equation (21) can be derived.

2 1
coscy =
1+Tan2 x-e2Tanlq
/2
1
R = a l—e2
¢ < (H-Tanza--ez‘ranzx))3

(1-e2) 12

= 3 l— ez 3/2
secza-ezTanzw

(1-e2) 172

Ak 3R S S8 s
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2 3/2

=2 1= 1-e2s5in2¢q
cosla
(1-e2) 172
_ 1-e?sinZa-eZcosla 3/2 1

1-e2sin2a T (1-e2) /2

___a(1-e?)
(l_e251n2a)3/2
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